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Abstract

In this paper, an indirect method is used to investigate the bifurcations
of limit cycles at infinity for a class of seventh-degree polynomial system,
in which the problem for bifurcations of limit cycles at infinity is
transferred into that at the origin. By the computation of singular point
values, the conditions of the origin (correspondingly infinity) to be a
center and the highest degree fine focus are derived. Finally, it is showed
firstly that a seventh-degree differential system can bifurcate eleven
limit cycles at infinity.
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1. Introduction

The second part of Hilbert’s 16th problem is concerned with the
number and relative distributions of limit cycles of the polynomial system

% = Pn(x’ y)’ % = Qn('x’ y)’ (1)

where P, and @, are Polynomials of degree n. Let H,, be the Hilbert
number, then in [10, 11], it is known that Hy > 4, Hg > 12. To study

distribution of limit cycles in the planar, we need to consider not only the
case of finite critical points but also the case of infinity. In the second

case, the research is mainly concerned on the following system of degree
2n +1

2n
d
d—f = ];)Xk(x, y)+ (—y + 8x) (2 + y2)",

2n
@ - ,;)Yk(x, )+ @y +x) (@ + ), @

where X (x, v), Y;(x, y) are homogeneous polynomials of degree & in x,
y. As indicated in [6] the equator I',, on the Poincaré closed sphere is a
trajectory of this system, having no real singular point. I, is also called
infinity. Conveniently, we denote I, the maximum number of possible

limit cycles in a neighborhood of infinity (large-amplitude limit cycles) of
n degree polynomial differential system in the form of (2). As far as the
number of limit cycles bifurcated from infinity is concerned, there are
some results so far in the literature as follows: in [1], Blows and Rousseau
had studied bifurcations of limit cycle at infinity for a class of cubic
system and obtained 5 limit cycles at infinity. In [8, 12], the authors gave

a real planar cubic system, which bifurcated 7 limit cycles at infinity
(i.e., Is > 7). For quintic systems, [2, 3,13] show that I5 > 5, I;

> 8, I5 > 11, respectively. For the higher degree systems, there are few
results. I; > 9 is proved in [4]. In this paper, we consider a class of

special seventh-degree differential system with the form
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ﬂ:

i Ajpx + Byoy + (Byy + Agg)x® + Apyxy + Aggy®

+ B30x3 — B21x2y + Bl2xy2

+ Aggy® + (Agex — Aggy) (22 + ¥%)? + (—y + &) (x% + y2)%,

dy _

it Bioy + Box + (Ayy + Byg)y* + Byyxy + Bogx®

3 2 2
+ B3gy® + Bg1y“x + Bygyx

— Aggx® + (Aggx + Agoy) (2 + ¥2)* + (x + 8y) (2 + ¥2)?, (3)

where Aij, Bij, deR,i,j=0,1, 2 and prove that I; > 11.

2. Some Preliminary Results

Consider a real differential system

% —6&—n+kZ;Xk(a, n), & §_5n+};Yk(§’ N, @

where X (&, n), Y.(€, n) are homogeneous polynomials of degree %k in
&, n. Under the polar coordinates & = rcos 6, n = rsin 0, system (4) can

take the following form

-5+ ) r* 1 9p.1(0)
dar _ k=2
de =r 0 ’ (5)
1+ Z rk71Wk+1(e)
k=2

where
0%.1(0) = cos 60X} (cos 0, sin 0) + sin 0Y}(cos 6, sin 0),
V}41(0) = cos 0Y},(cos 0, sin 0) — sin 06X}, (cos 0, sin 0),
k=12, ..

For sufficient small A, let
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0

d(h) = r(2m, h) R, = 1(6, h) = > v, ()R 6)

m=1

be the Poincaré succession function and the solution of Eq.(5) associated

with the initial condition r|g_g= A. It is evident that

v1(0) =¢e®, v, (0)=0,m =2, 3,---. (7
Similar to [6], if v;(2n) # 1, then the origin is called a rough focus; if
vi(2rn) =1, and v9(2n) = v3(2n) = -+ = vgp(2n) = 0, vg,1(2n) = 0, then

the origin is called a weak focus (fine focus) of order k£ and the quantity of
vor,1(2m) is called the k-th focal value at the origin (k =1, 2, ...); if

v1(2n) = 1, and for any positive integer %, vg,1(2n) = 0, then the origin

1s called a center.

By means of transformation
z=¢+imw=E-i, T =1it,1i =~-1, (©)
system (4)|s—o can be transformed into the following complex system

o0

dz dw ~
a7 -3t };Zk(z, w)=Z(z,w), a7 - - }Z;Wk(z, w)=-W(z,w), (9)

where z, w, T are complex variables and

Zp(z, w) = Y, aaﬁzawﬁ, Wy (z, w) = Zbaﬁwazﬁ.
a+f=k a+B=k

It is obvious that the coefficients of system (9) satisfy the conjugated

condition, namely,

op = bops 0 20, B> 0, 0+ > 2. (10)
It is called that system (4)[5-¢ and (9) are concomitant.

Lemma 2.1 (see [7]). For system (9), we can derive successively the
o0
terms of the following formal series M(z, w) = Z c@BzO‘wB such that
o+p=0
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a(MZ) o(MW) k
W2) W) S (m + atm) (e an
m=1
where ¢y o =1, ¢, is any real number, k =1, 2, ---, and for any integer

m, w(m) is determined by following recursive formulas:

co,0 =L if (o =P >0)ora<0orP<0,thenc,p =0

else
1 a+p+2
b = F-o D e+ Dag 3 B +1)b) p1leg pinpjirs
k+j=3
2m+2
u(m) = Z [ag, j-1 = bj p-1]Cm—ts1, m—ji1- (12)
k+j=3

Asin [7, 9], u;, in Lemma 2.1 is called the singular point value at the

origin of system (9). The relations between singular point values and
focal values is given in the following lemma.

Lemma 2.2 ([8]). For system (9), the first non-vanishing singular
point value and the first non-vanishing focal value of its concomitant
system (4)|s—o are related by

v2m+1(2ﬂ7) = UMy, (13)
3. Singular Point Values and Center Conditions

By means of translations x = ({+¢)/2, y = -i( -¢)/2,t = i1, i =

V-1, we can obtain a concomitant complex seventh-degree system to

system (3)

d 2 2 3
d_f = a10C + ag16 + agpl” + ag18g + ag1L7c + apss

+agetie? + (1-i8)c%e?,
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d
d_i = —[byoG + bo1G + bagc® + br1Go + ba162C + bysC®

+ 396?02 + (1 +38)C %%, (14)
where

_AOI + iAlO + BOl + iBlO

—Ag1 — 1440 + Byy — 1By

ay = 5 b = 5 ,
a _ AOl — iAlO + BOl + iB]_O b _ AOI + iAlO + BOl — iBlO
01 — P) ) 01 — 9 9
Qon = —Aj; — By o — —Apy + 1By
20 — 9 ’ 20 = 9 s
a _ —ZiAOZ — iBll + 2320 + All _ 2iA02 + iBll + 2320 + All
11 — 2 ’ bll - 2 )
a _ —A03 + B21 — iB30 + iBl2 b _ —A03 + B21 + iBSO — iBIQ
03 — 4 ’ 03 — 4 )
a _ —3A03 — iA12 — SiBSO + BZl b _ —3A03 + iAlZ + SiBSO + iBQl
21 — 4 ’ 21 — 4 9

agg = Agg — 1A3s, b3y = Agg + iAgg. (15)

Evidently, the coefficients of system (14) satisfy the conjugate condition,

l.e., a; = b_ij(i, j=0,1,2, 3). By means of coordinate ¢ = z 6=
(ew)

— and time scaling dt = %dT, system (14) can be transformed
(zw) ()

into the following system

5—; = (1 + % iéjz + (% asg + %b32)28w7 + %a03213w16

3 4 15 14 4 17,12 (3 4 18, 18
+(7(121 +7b21j2 w +7b032 w +(7(111 +7b20)2 w
19, 17 21, 22 23, 20

3 4 3 3 4 22 21 4
+(7020+7b11j2 w +7a01z w +(7a10+7610)2 w +7b012 w-,
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dw 1. 4 3 3
a7 = [ (Fam + Fow Jute + Fot'e

+ (é ag1 + %b21)w15214 + %0031,017212 + (% Q9o + %blleUlSZlS

7
+ (% app + %b20)w19217 + %b01w21222
+ (% Qg + %blo )wﬂzz1 + %amw%zzo}. (16)

Suppose that system (16’) be concomitant system of system (16) ( i.e,
by means of transformation z=§&+ni,w=&-ni, T =it,1 =+v-1,
system (16) can become system (16’)), then the problem of bifurcation at

infinity in real system (3) will be transformed into that at the origin of
real system (16’).

According to recursive formulas given by Lemma 2.1, and using
computer algebra system—Mathematica, we compute the singular point

values of the origin of system (16)|5_o and simplify them, we have

Theorem 3.1. For system (16)|5—q, the first 112 singular point values

of the origin as follows

—agg + b3y

u(7) = —5—=, u(14) = ALY

—ajg + by

> u(21) = » u(28) = 0,

a11a99 — by1b
u(35) = 207b11 20 .

Casel. (120b20 = 0,

2 2
ai1bgy — bi1a
u(42) = u(49) = 0, u(56) = %bnm’ u(63) = 0,

2 2
—ap1ai1bg3 + b a
u(70) = — 901941 o:;1 01611903

4 4
—a11bp3 + b1a ago + b
H(77) _ u(84) =0, H(gl) _ ( 11Y03 11203)( 32 32)’
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5(— atbge + bha a9, +b
p.(98)= ( 11903 121103)( 21 21),

27(~ atibgs + biags ) (arg +
n(105) = (= ar1bog 5%03)( 10 +bio)

Bagsbos (— atibes + biia
u(112) = %3 03( 161303 by 03);

Case 2. azobzo = 0,

n(42) = n(49) = 0,

u(56) = — 4(adpan; —b3obo1 )+ (af1bor —bf1ag1)+ 4(az0a01b11 —baoborar1).
7 )
Case 2.1. a;; = 2b20, bll = 2020,
n(63) = p(70) = W(77) = u(84) = u(91) = p(98) = p(105) = p(122) = 0;
Case 2.2. a;q # 2b20, bll * 2(120,

u(63) = 0, 1(70) = [2(agsa3obor — bosb3oao1 ) - 5(a03a30bo1b11
—bosb3oaoian ) - 2bosatiagr - 0035121501)]/42;
Case 2.2.1. if ag3asy = bysbso, then
w(77) = u(84) = w(91) = n(98) = n(105) = u(112) = 0;

Case 2.2.2. If 003(130 * bogbgo, a;p = %bzo, bll = %azo, then

2 2
77y = 33(ap3a20001 — bosba0a01) (ase + bsa)
p’( ) - 448 )

4 4 2 2
u(84) = 9[5(by3bzp — ap3azn) — (ap1a21b03b30 — bo1b21a03a%0 )

2 2
+ (apsbo1agpag; — bo3ao1b2ob21)]/ 56,
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1(91) = =2 [195(agsa10a2obo; — bosbrobZoaor )
9940 03910220001 — bo3b10b2001
+ 28(ag3ag0b81b20 — bosbaoadiaso)
2 2
—195(ag1a10003b20 — bo1b10@03220 )],
B 6 6 2 9,9
n(98) = 9[175(apyagsaszy — bo1bosbso) + (ap1653a50001b03
- 501533550031003)]/784ao1b01§
4 4 1 1
Case 2.2.3. If Qp3Q9g # b03b20, ajp # 5620, bll * §a20, then
w(77) = 0,

4 4 3 3
[~ 16(apgazy — bosbag) + 28(agsazobi1 — bosboarr )

ENIEE

n(84) =

3 3
+ 3(apsagobil — bogbaoait)

9,2 2 9
- 16(agzaszpbin — bosbzoaii)l,

4
91) = 187(= agsasy + bogbso) (ase + bz)
n(o1) = 13608 ’

98) — 40(= ag3azg + bogbso) (ag1 + byy)
n(98) = 1701 ’

5(— agsasy + bosbao ) (a1 +
u(105) = 2903920 10(:33820)( 10+ b1o)

u(112) = 17605a03bo3(@03a30 ~ 5035510),
35721
where w(k) =0, k # 7i, 1 < 16,1 € N. In the above expression of w(k), we
have applied the conditions p(1)=p@2)=-=wk-1=0, for
k=238 112.
Theorem 38.2. In system(16)|5—q, all of the first 112 singular point

values at the origin vanish, if and only if one of the following conditions
holds
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(1) agg = bss, a1 = bo1, @19 = big, @102 = byibag, atibos = bi1aos.
QAo0bog = 0; am
2) ag1 =bay, a1g = by, A1a90 = by1bag. A0130 = 1630, A03a30
= bo3bzo, agz = bsz, asobsg # 0; (18)
(3) agg = b3y, agy =bey, a9 =byg, 411 = 2byp,
b11 = 2asg, agobgg # 0. (19)

Proof. Obviously, the condition is sufficient. Now we prove its
necessity.

From p(35) = (aggay; — bagbi1)/7 = 0, we can know that aggbgg = 0

or azobzo # 0.

Case 1. agybyy = 0. By wu(56) = (bgjaiy = agib?y)/7 =0, it can be
obtained that a;16;; = 0 or a;;b6;; # 0. () If a;16;; = 0, then n(63) =

w(70) = -+ = w(112) = 0; (i1) if ay1b;; # O, there exists constant p, such
that agy = pafi, boy = pb1, so w(63) = 0, W(70) = (- a1bys + biiags)
p/21. If aiibys = biiags, then w(77) = u(84) = --- = u(112) = 0, else

atibos # biags,ie., aggbos # 0, then p(112) = —Bagsbgs(— aiibos +
bi1by3)/63 = 0. Therefore, the condition (1) holds.

Case 2. aggbgg # 0. If there exists constant r, such that
ay =rbyg, byy = rag, then p(56) = (- agiady + boiby) (- 2 + 7)%, so we
can obtain r=2 or ama%() = b01b§0. I if r=2 then
w63) = p=(70) = --- = w(112) = 0, so condition (3) holds; (II) if r = 2,
there exists constant ¢, such that ag; = qb%o, bo1 = qa%o. From
w(70) = (agsagy — bosbao)a(- 2+r)(-1+2r), we can know that

Qo3aay = b03b§0 or g =0 or r=2 or r=1/2. By computation and
deduction, the condition (2) holds.

From Theorem 3.2, it can be got that
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Theorem 3.3. For system (16)|5_q, all of singular point values at the

origin are zero if and only if one of the three conditions of Theorem 3.2
holds. Hence the conditions of Theorem 3.2 are the center conditions of
system (16)|s—o at the origin. Relevantly, the three conditions of Theorem

3.2 are the center conditions of system (14)|5-o at infinity.
Proof. Let us prove the sufficiency. If the condition (17) or (18) holds,

According to the Constructive Theorem of Singular point values( see ([12,
Theorem 2.5] or [13, Theorem 4.15])), we get that all u, =0,k =1, 2, ---.

So, the origin of (16)|5-( is a complex center.

If condition (19) holds, system (16)|5_o has a analytic first integral
1
F(z,w)=w'2"'G 4,
G=3+ 4b32w7z7 + 12b10L021,221 + 6by 'tz

0

+ 61)01w2 222 4 6a01w22 2

220 4 3a03w16212

+ 12a20w17218 + 3b03w12216 + 12b20w18217,
so the origin of (16)|s5-¢ is also a center.
From Theorem 3.3, we have the following

Theorem 3.4. Infinity of system (3) is a center if and only if 8 =0

and one of the three conditions in Theorem 3.3 holds.

4. Bifurcations of Limit Cycles

In order to consider bifurcations of limit cycles, system (16’) needs to
be transformed by transformation: & = r cos 6, n = r sin 0. And under the
initial-value condition r|g_g= h, its solution can be expressed by

r=7(, h)= Zv14m+1(9)hm, where  v1(0) = ¢®, v, (0) =0, m =2,

m=1
2, ---. The 1dea of finding m limit cycles around the origin of system (16’)
is as follows. First, we find conditions such that v;(2n) = 1, v15(2n) = -+~ =

U14p-1(2n) = 0, but viyp,1(2n) # 0 for some k > m, then perform
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appropriate small perturbations to prove either that the Poincar'e
succession function

o0

d(h) = r2m, k)~ h = (v (21) - Dk + D vy4j4 @R)RM, (20)

=1
has just m simple positive roots or that
V14j+1(2m)014(j-1)11(27) < 0, [o14(j-1)41(2m) [ < [v14j41(27)],
J= v dzs s Jme U Jos s mt € AL 2,00, Y 21

holds.

From Theorems 3.1 ~ 3.2, we obtain

Theorem 4.1. The highest order of singular point of system (16)|5—q
at origin is 112, namely, u(1) = u(2) = --- = u(111) = 0, u(112) = 0, if and
only if one of the following conditions holds

(1) agy =by1 =0, a9 =bygp =0, agg =bgg =0, ag; =0by; =0,
4 4 4 4 .
aj; = §b20, by = 3 @20 agobgg # 0, aggagy # bogbyo; (22)
(2) agy =by; =0, a9 =bg=0, agy =bzyy =0, ap =by =0,

4 4
agy =bgy =0, ajiagy = by1byg, apzbi1 # bozas;- (23)

They are also the necessary and sufficient conditions for the origin of
system (16')|5—o to be a weak focus of order 112.

By Theorem 3.1 and 4.1, the case of bifurcations of limit cycles is
constructed as follows:

Theorem 4.2. If the coefficients in system (16) satisfy

8 = —g11, a9 = —€1 +i€g, bjg = @0, Ag; = €3 — &g, by; = Ay,

4 . _ . _ .
ayy =g~ 84 7, bi1 = ay1, agg = —€3 + g1, byg = Az = —€5 + igg,

bo1 = @1, ago = bgo =1, apg =1, bz = 1,
where €;(i =1, 2, ---, 11) is the small parameter which satisfy 0 < g1; <

€10 KK gg K g K1, then system (16") has 11 limit cycles in a

sufficiently small neighborhood of the origin, correspondingly, system (3)
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has 11 limit cycles in a sufficiently small neighborhood of infinity.

Proof. According to Theorem 3.1, v{(21) -1 = ¢>® -1 and Lemma

2.2, by computation we have

v1(2n) -1= —27'[811 + 0(811),

(2
v15(2n) = 7Tf+ o1 (g1, €9, €3, €4, €5, €65 €7, €8, €9, 810)}810 +0(g10 ),

2
vog(2m) = T wy(e1, €9, €3, €4, €5, E6, €7, €8, €9, 810)}89 +o(eg),

2
vys(2n) = 7Tf+ w3(e1, €9, €3, €4, €5, €6, €7, €8, £9, 310)}58 +o(eg),

2
v71(2n) = —7TC+ w4(e1, €9, €3, €4, €5, €6, £7, £8, €9, 810)}87 +o(e7),

8
v113(27) = [63 m+ 05(e1, €2, €3, €4, €5, €65 £7, €8, €9, 810)}86 +o(eg),
10
Vi1 (21) = ~ 189 oo T+ 0g(e1, €9, €3, €4, €5, €65 €7, €8, €9, £10) |&5 + 0(€5),

8
vigg (21) = [ﬁTH o7(e1, €2, €3, €4, €5, €6, €7, €8, €9, £10) 84 + 0(€4),

187
vig3(2m) = | - 3402 T+ 0g(e1, €2, €3, €4, €5, €65 €7, €85 €9, 810) eg +o(es),

160
vig7(21) = {1701 T+ wg(er, €2, €3, €4, €5, €6, £7, 8, €9, £10) |E2 + 0(e2),

5 .
V211(27[) = [_En"' 0)10(81’ €9, €3, €4, €5, €6, €7, €8, €9, 810) €1 +0(81)’

3520

Vos5(21) = ER TR o(1),

(24)

where o;(g1, €9, €3, €4, €5, €6, €7, €8, €9, £19) 18 analytic at (0, 0, 0, 0,

0,0,0,0,0,0) and (Di(O, 0,0,0,0,0,0,0,0,00=0,7=1,2, -, 10.
From formula (24), we get that vig(n_1)+1(27)Vigm.1(21) <0 and

V14(m-1)+1(20)| < |Vigmi1(@0)|(m = 1, 2, 3, 5, 8,10, 12, 13, 14, 15 16).



214 WENTAO HUANG, LI ZHANG and HUIXU XU

According to classical theory of Bautin, system (16’) has 11 limit
cycles in the sufficiently small neighborhood of the origin.
Correspondingly, system (3) has 11 limit cycles in the sufficiently small
neighborhood of infinity.

From Theorem 4.2, we get I; > 11.
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